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1. INTRODUCTION.

Mathematical models of terminal ballistics processes contain uncertainties that
have two fundamentally different roots. First, one has the usual stochastic errors of
observations and responses of materials. These errors can be handled by conventional
statistical methods based on estimated probabilities, although in ballistic problems the
limits of application for these methods sometimes must be stretched due to missing or
scarce data. A second source of inaccuracy is the lack of knowledge about processes of
threat/target interaction. Details of these processes are difficult to observe, they are
often not well understood and not represented by established theories. For the
treatment of this type of inaccuracies one can use the concepts of fuzzy set theory that
has been developed to quantify judgement. Fuzzy sets can also represent inaccurate
data, in particular if an error distribution of the data is not known or does not exist (for
instance, in intelligence data or in future weapon concepts). In the present report we
assume such a representation, that is, the data are assumed to be fuzzy numbers and the
mathematical model is assumed to be a fuzzy function. We then formulate a fuzzy
regression problem based on the minimization of a least squares objective function.

Special types of fuzzy regression problems have been treated by several authors.
Tanaka et al., (121 and [13], developed linear programming algorithms for regression
with fuzzy linear models and special types of fuzzy data. The algorithm of [12] was
applied by Heshmaty and Kandel [9] to economic forecasts. Diamond suggested in [6]
and [7] a least squares approach and in [8] a maximum likelihood approach to fuzzy
linear regression problems with special fuzzy data. Celmiig has treated regression of
nonlinear models with a slightly more general type of data in the special cases where
either only the data [3], or only the model [4] is fuzzy. In the present paper, the results
of [3] and [4] are extended to a general regression problem, where the model equations
are nonlinear and the model as well as the data are fuzzy. Some restrictions are
imposed on the generality in order to obtain a method which is algorithmically simple.
The restrictions involve a parametrization of the membership functions which are
assumed to be conical functions. Under this restriction, one can solve the model fitting
problem with the aid of available regression software for implicitly formulated
constraints, supplementing the software only with normalization procedures for some of
the input.

In Section 2 we develop some simple concepts and properties of a special fuzzy
point space. These results are used in Section 3 to derive a formalism for a fuzzy



regression. In Section 4 the fuzzy regression is applied to the task of developing a model
for the bending of armor plates due to loads by pressures from explosions of bare
explosives.

2. FUZZY GEOMETRY.

In this section, we provide basic definitions of fuzzy set theory and develop simple
concepts of analytic geometry in a fuzzy environment. The purpose of the section is to
establish practical tools for model fitting, and to provide a geometrical interpretation of
the fitting and its results. Therefore, the exposition is restricted to a special type of
fuzzy spaces for which one obtains algorithms that are easily applicable to real life
problems.

2.1. Basic Definitions.

In presenting the basic definitions we follow in essence Zimmermann [161. A
classical set is normally defined as a collection of elements of eEE. Each element can
either belong or not belong to a set HE. The set can be described by a characteristic
function which equals unity if e is an element of H and is zero if e does not belong to H.
We call such a set a crisp set. A generalization of the concept of a crisp set is obtained
by allowing the characteristic function to assume values that are not restricted to zero
and unity. To distinguish such a function from a characteristic function it is called
membership function.

Definition. A fuzzy set H in E is a set of ordered pairs

H= e, AH(e) I eE } (2.1)

juH€e) is called the membership function or grade of membership of e. The range of
'Ai,(e) is a subset of nonnegative numbers whose supremum is finite.

In this paper, we assume that the range of the membership function is the interval
10,11 and that elements with a zero degree of membership are not included in f. If the
membership function assumes only the values 0 and 1, then the set Hf is non-fuzzy
(crisp) and MH is its characteristic function.

The concept of a fuzzy set allows one to express uncertainty in a manner which is
different from probabilistic concepts and interval analysis. Thus, for instance, the
concept "about 5" might be represented by a fuzzy number '? whose membership
function ps(x) has a positive maximum value at x=5 and decreases to zero as Ix-51
increases. Zimmermann [16] discusses many examples of such concepts and their
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representation as fuzzy sets.

2.2. Fuzzy Point Space.

A fuzzy point in R, is a fuzzy set of points XER. Let the membership value of
any element of the set be given by a membership function p(X). In this paper, we only
consider a particular type of fuzzy points which are characterized by fuzzy position
vectors with conical membership functions.

Definition. A regular (not regular) fuzzy vector X in R n is the pair

X={A, PA } , (2.2)

where A ERa. and PA is a positive definite (semidefinite) (nXn)-matrix. A is called the
apex of X and PA is called the panderance matrix of X.

With this definition, a fuzzy vector in an n-dimensional space is specified by
n'(n+3)/2 real numbers. Let QA be the Moore-Penrose generalized inverse of PA and
let XAR n be the linear space spanned by the columns of PA. We denote by ii " 1IA the
following elliptic norm of the distance between an arbitrary XER n and A:

[[_[A [(X -A )T.QA.(X -A)]11 / 2 , if X-A E X A

IX - AIA +oo otherwise. (2.3)

Definition. The conical membership function of X is

pA(X) = 1 -min { 1, lix- AliA} (2.4)

The fuzzy point X is the set of all vectors X with the property /MA(X)> 0. If the
panderance matrix PA is positive definite, then the boundary of the support of PA and
the level surfaces /IA(X)=constant are hyperellipsoids in R n and (2.4) defines a cone.

The conical membership function AA is normalized to 05 AA< 1, and a fuzzy point with a
conical membership function is a convex fuzzy set [141. If the panderance matrix PA is
semidefinite then the cone is degenerate in R n and is a regular cone in the subspace XA.

In R 1, the conical membership function is the triangular function

Sa(x) I - min {1, Ix - aJ /s} , (2.5)

where s.=-Pa is the spread of the function. In R,, the membership function of each
component of X is a triangular function with a spread that equals the square root of the
corresponding diagonal element of PA. The triangular function is, of course, the

projection of the cone (2.4) on the corresponding axis. Figure 1 gives a schematic
illustration of the conical membership function of a fuzzy point (vector) in R2 .
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The off-diagonal elements of PA indicate possible interactions [15] between the
components of X. These elements can be conveniently represented by dimensionless
concordances which we define for a regular fuzzy point as follows

Ci -- Pki / , k, i -,..., n , (2.6)

where ck and Pki are elements of a concordance matrix and the panderance matrix PA,

respectively.

We introduce a structure in the space of fuzzy points by the following definition of
discord and grade of collocation between fuzzy points.

Definition. The discord between two fuzzy points X and ff is

D(A,B) min max { lIX - AIJA, IIX - B11B } (2.7)
XER,

We note that the discord is not a distance in the sense of functional analysis,
because it does not satisfy the triangle inequality.

If the panderance matrix of one of the vectors in eq. (2.7), say PB, approaches a
zero-matrix, then /B(X) approaches the characteristic function of the apex B. That is,
the corresponding B approaches the crisp point B. The corresponding limit of the
discord is

Jim D(X,B) = 1iB - Al • (2.8)
B-. B

Definition. The grade of collocation between two fuzzy points X and U is

=(X,B-)-- max min {/JA()M, B(J0 } . (2.9)

The grade of collocation and the discord are related by

= 1 - min 1, D(X,B) } . (2.10)

2.3. Fuzzy Functions.

We interpret functions as mappings of a domain in Rn to a range in Rr. Usually,
we shall assume that the mapping function is twice continuously differentiable with
respect to all arguments of interest, i.e., with respect to XER, and with respect to any
free parameters, if present. If some of the arguments are fuzzy numbers or fuzzy
vectors, then the image of a crisp or fuzzy point in R. is a fuzzy point in Rr. For
consistency with crisp mappings, we shall always assume that the image of the apex of
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the argument is obtained by replacing in the function all fuzzy arguments by their
apexes. That is, the apex of a fuzzy point is mapped onto the apex of the image. The
panderance matrix of the image can be computed in terms of the panderance matrices of
the argument and parameters by formulas which are derived in this section.

2.3.1. Linear Functions.

We first consider a mapping of R. onto itself by an affine coordinate
transformation, and derive a panderance propagation formula for such mappings from
the requirement that the membership value of any XER, should be the same in both
coordinate systems.

Proposition 1. Let Z, Z0 , X and AERn, D be a non-singular (nXn)-matrix, and

Z = L(X)=D. X + Z0 . (2.11)

The image of the fuzzy point which is represented by the fuzzy vector

A={A, PA} (2.12)

is the fuzzy point (vector)

={B, PB} , (2.13)

with the apex

BfD-A +Z 0  (2.14)

and the panderance matrix

PB = D "PA " D  (2.15)

Proof. Equating the membership values of an XER, in the new and old
coordinate systems, respectively, one obtains

AB( L(X) )-A(X)

or, from the definition (2.4),

IIL(X) - BII =IIX -All (2.16)

in a neighborhood of A. If X=A, then the right hand side of (2.16) vanishes and the left
hand side produces eq. (2.14). Using this result, we express the left hand side of eq.
(2.16) by
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(D.X+ Zo - B)T. Q" (D.X+Z o -B) --

=[D -(X-A)IT .QB*[D*(X- A)I= (2.17)

=(X-A)T" DT. QB D (X-A)

Hence, from eq. (2.16)

DT . QB.D=QA , (2.18)

or, because D is not singular,

PB=D•PA D q.e.d.

The extension principle for fuzzy functions [151 states that, if Z is a function of
L(X) and B=L(X), then one should have the relation

PB(Z) = max PA(X) (2.19)
X. L()-Z- 0

The formulas (2.14) and (2.15) are componentwise consistent with this principle also in
cases where the affine mapping (2.11) is not a coordinate transformation. The
consistency is a consequence of the following proposition:

Proposition 2. Let Z and ZoERr, X and AERn, D be a non-zero (rXn)-matrix of
rank r and

Z =L(X) = D- X + Z0 . (2.20)

Then the image ff of a regular fuzzy vector X as defined by eqs. (2.14) and (2.15)
satisfies the extension principle condition (2.19).

Proof We formulate the right hand side of eq. (2.19) as the following constrained
minimization problem:

Minimize
W--(X-A) '- p '1 (X-A)

subject to (2.21)

D.(X-A)=Z-B .

We solve (2.21) using a Lagrange multiplier vector k and defining a modified objective
function

11---' (X- A)r . P; I.-(X -A) -kT D (D.(X -A) - Z+B). (2.)').

The normal equations for the minimization of Ik are
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pA' .(XA)_D T k -- O ,

D(X-A)-Z+B=o (2.23)

Solving the first eq. (2.23) for k, one obtains

k =(D - P A " DT) - 1 D " (X-A) . (2.24)

We substitute this expression into the first equation (2.23) and multiply the result from
left by (X-A ) T, obtaining

(X -A)T.P 1.(X -A) =(X- A )T.-D T.(D.PA.D T)-'.D.(X- A). (2.25)

This equation holds at the solution of the minimization problem. The left hand side of
the equation is the sought for minimum value of I'. The right hand side can be
simplified by using the second eq. (2.23) and eq. (2.15) to yield (Z-B)T'P1.(Z-B).
Hence,

(X - A)T. "'Z P - (X - A) ]i (Z - B)T PWI .(Z - B) , (2.26)

q. e. d.

Corollary 1. If the mapping

Z = L(X)= D X + Z0  (2.27)

maps X into a subspace.of R. and AB(Z) is defined by eqs. (2.14) aid (2.15), then (2.19)
holds in that subspace.

Proof. Let the dimension of the subspace be s. Then, by a proper coordinate
transformation, (2.27) can be rearranged in the form

ZI f D , - X + Z l0

Z2 =J (2.28)

where D1 is a (sXn) -matrix with the rank s. The Proposition 2 applies to the first s
equations (2.28), proving the corollary.

If X is not a regular fuzzy point in Rn then only the subspace ) 4 (defined in the
paragraph following eq. (2.2.)) where X has a positive membership value is relevant for
the mapping. This subspace is mapped by (2.20) into another linear subspace Z4 R.
Proposition 2 and Corollary 1 directly apply to the mapping of XA into ZA.

So far we have considered a crisp linear function, eq. (2.20), with a possibly fuzzy
argument X. Now we let the function be fuzzy and assume for simplicity that the
argument X is crisp. That is, we consider the function
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Z=r(X)=UT.X+2 7 , (2.29)

where some of the elements of U and 2 0 are fuzzy numbers or vectors. By definition, a
fuzzy linear function is a subset in a function space S. That space consists of all linear
functions which map R. into R,. Its dimension is r(n+l), i.e., the number of elements
of D and Z4. Each element of S is defined by a particular set of the elements of D and
Z0, which in turn has a well defined non-negative membership value, given by the apexes
and panderances of Df and 20. We assign to the corresponding function L(X) the same
membership value thus defining the fuzzy function set L'(X). The image of a crisp X by
eq. (2.29) is fuzzy due to the fuzziness of the function: a given X produces several images
in Rr, each with a corresponding membership value. Also, a given ZERr possibly can be
the image of several points XER, whereby each of the corresponding mappings has a
specific membership value. According to the extension principle for fuzzy functions we
assign to the image Z=,t(X) the supremum of these alues as its membership value.

To calculate the apex B and the panderance matrix of the image ='(A) we can
invoke the Proposition 2, because eq (2.29) can be considered as a crisp linear function
(defined by the cr isp elements of X) of the fuzzy arguments U and Z 0. Let T, and
T2 =f{T,PT 2} be, respectively, the vector of all 'crisp and all fuzzy elements in Df and
Z0, and let eq. (2.29) be expressed by

Z = F(X, TI, T 2). (2.30)

Then,

B =F(A, TI, TO2) (2.31)

has a panderance matrix which formally is given by

-- T2  * 0T (2.32)

We present two examples. First, let z be a scalar function

z = f(X; T) = g(X; CZo) XT. C + zo  (2.33)

and let T be the fuzzy vector

!Y=1(ZCIIPTI (2.34)

Then, for X=A, the apex of the function value is

I I P-8-



z b = A T. C+zo (2.35)

and its panderance matrix is

Pb( AT,1 ) PT A) (2.36)

As a second example, assume that in eq. (2.29) the panderance matrix PD of the
fuzzy elements of Df is diagonal, and that all concordances between elements of U and
ZO are zero. The formula (2.32), evaluated at X=A, then is

fPDIA 0 ... 0

0 i PD2 jA, ... 0
t-1

. - .. (2.37)
n

o o ... PDjA?i-1

2.3.2. Nonlinear Functions.

We consider twice differentiable functions

Z = F(W) , (2.38)

where ZER, and WER n. Let the argument W be a fuzzy vector C. Then the value of
Z is a fuzzy vector f with the apex

B = F(C) (2.39)

and a panderance matrix which may be approximately computed by expanding the
function F(W) at W=C. The linear part of the expansion is

OF
L(W) = F(C) + -- ( W - C) ,(2,40)

where OF/OW is evaluated at W=C. Applying the panderance propagation formula
(2.15) to the linearized function (2.40), one obtains the approximation

PBOF P __ (2.41)

For the intended application (mathematical model fitting) it is convenient to split
the argument W of a function into two sets: observables X and parameters T, that is,
to express model functions F(W) in the form

-9-



Z = F(X, T) . (2.42)

Either X or T, or both, can be fuzzy and the approximate formula (2.41) may be
applied accordingly. In particular, if X=X and T=e, and the panderance matrix of
the vectors A and C is

Pw [ P A  P A C (2.43)
- PA PC 'I

then the linearized form (2.41) of the panderance propagation formula is

OF p OF a' Fp I' F a A
8X A 9XJ T 5 T) aX AC T

af" _2IT (2.44)
+ "5'T- "CA O X

We consider as an example the scalar function

z = f(X, T, zo) = XT. T + zo  (2.45)

with the fuzzy arguments X=X, T=Y and z0 =9. The function can be expanded at the
apex (A,C,v) of its argument to yield

f(X,T,zo) =AT.C + v + CT.(X-A) +AT'(T- C) +(z o -v) +
(2.46)-( T - C)T.(X - A) .46

Using the approximate formula (2.44) we obtain

PB pt CT'PA. C + A TPC'A + P, + 2A T'PCA:C + 2P A C + 2A T. pCv (2.47)

The approximation comes about by the neglect of the last summand in eq. (2.46), i.e.,
the nonlinear part of the function. Its contribution generally is small if T is close to C
and X is close to A.

The advantages of the approximate calculation of the panderance of a function by
eq. (2.41) are twofold. First, the formula is simple and can be easily included in
algorithms using fuzzy arithmetic. Second, it produces function values which have
conical membership functions. That is, with this approximation, one stays in conical
fuzzy vector spaces (including degenerate vectors with semidefinite panderance
matrices). The disadvantage is, as in any approximation, that in certain cases the
approximation may not be sufficiently accurate.

- 10-



2-3.3. Fuzzy Function Space.

In analogy to the linear functions discussed above we may consider the nonlinear
function

Z = F(X, T) (2.48)

with a fuzzy parameter vector T as a fuzzy function of a crisp argument:

Z = F(X) . (2.49)

To define the fuzzy set of functions, F, we specify a corresponding membership function.
In the case P(X) =F(X, T), each member of the set F is given by a particular parameter
value te T. We assign to the function F(Xt) the membership value of t:

AFT( F(Xt) )-AT(t) (2.50)

In this paper, we only consider fuzzy functions of the described type, that is, we assume
that a fuzzy function always is defined in terms of a fuzzy function parameter.

To measure the separation between elements of a fuzzy function space, we define
the following norm 11 ' "FT for the distance of the crisp function.F(X,t) from the crisp
"apex" function F(X, T) with the membership value one:

11F(X,t) - F(X, T)IIFT = lt- T T [ (t - T)T . pTI.(t - T) ]1/2. (2.51)

(If T is not a regular point, then PT' is replaced by QT and the norm defined in
accordance with eq. (2.3) ). With this definition, one has in analogy to (2.4)

AFT( F(X,t)) 1 - min ( 1, IIF(X,t) - F(X,T) 1IFT } • (2.52)

The discord and the grade of collocation between two fuzzy elements of the fuzzy
function space are defined in analogy to eqs. (2.7) and (2.9), respectively.

2.4. Fuzzy Equations.

A fuzzy equation is a fuzzy set of equations. One obtains a fuzzy equation, for
instance, by setting a fuzzy function equal to a crisp or fuzzy zero. Let XER,, TERP
and the function F(X,T)ER,. We further assume that F is at least twice continuously
differentiable in a proper domain,

r n and r<p . (2.53)

We define a fuzzy function as in Section 2.3.3., and obtain a fuzzy equation by setting
the function equal to a crisp vector with r vanishing components

- 11 -



F(X) = F(X, T) = 0. (2.54)

We shall assume that the right hand side of a fuzzy equation always is a crisp vector.
By permitting it to be a fuzzy vector one does not gain additional generality, but merely
increases the number of fuzzy parameters by r. That is, the fuzzy equations

(X) O(2.55)

and

GCX) = (X) - =0 (2.56)

are equivalent sets of equations in a sense which we shall describe shortly. Any crisp
tE T defines a particular crisp equation of the fuzzy set (2.54). That crisp equation
either has no solution or defines a crisp solution X14t). We assign to the equation and to
-its solution the membership value of the function F(Xt), that is, the value IT(t).

The solution XF(t) of the crisp equation F(X,.)=O is in R n a (n-r)-dimensional
hypersurface which is the set (locus) of all points X that satisfy the equation. The fuzzy
equation (2.54) defines in R. a fuzzy surface kF, that is, *a fuzzy set of (n-r-
dimensional surfaces. The surface corresponding to the parameter value t is assigned
the membership value PT(t). The fuzzy surface XF contains all points X which satisfy
eq. (2.54) for some tE T. To an XEXF we assign the largest membership value of all
solution surfaces that pass through X, that is,

A~xF(X) tSF( t).oFT F(X, t)) sup ~t_ PrtM (2.57)

If X 4 Y,, i.e., if X does not solve the eq. (2.54) for any tE T, then we assign to X the
membership value zero.

Now we consider eqs. (2.55) and (2.56). Their equivalency is related to the
following proposition.

Proposition 3. Let XER,, CERr, C={C,Pc}, and the function G(X)ER r. Then
the solutions of

G(X)=C (2.58)

and

F(X,C) = G(X) - C =0 (2.59)

are identical fuzzy sets.

Pr. Eq. (2.58) is a fuzzy set of equations. Let its solution be XG. Because one
side of the equation is crisp, one may use eq. (2.57) to construct the solution in terms of
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its membership value. The result is

pxa(X) S t 't t). (2.60)

On the other hand, according to eq. (2.57) the solution of eq. (2.59) is a fuzzy set with
the membership function

IIF(X) ----t: G(supt-/C(t) (2.61)

Because the delimiters for the maximization of MC(t) in eqs. (2.60) and (2.61) are
equivalent crisp expressions, IpxG(X)=xF(X), q.e.d.

Corollary 2. The solutions of eqs. (2.55) and (2.56) are identical.

Proof This is the special case c= U of Proposition S.

Proposition S and Corollary 2 show that certain algebraic manipulations of fuzzy
equations are permitted in the sense that they do not affect the solution of the
equations. We note, however, that not all manipulations which are permitted for crisp
equations can be applied to fuzzy equations. For the present paper, the important
consequence of Proposition S is that one can assume on the right hand side of a fuzzy
equation a crisp vector with zero-valued components.

The definition (2.57) of the membership function of 2F is not practical for
numerical algorithm... We provide, therefore, another equivalent definition in terms of a
norm for the distance between X and the solution of F(XT)=O, i.e., between any
XER, and the crisp solution surface XF(T). We define such a norm by

IX - XFIIXF = inf lit - TIl T (2.62)t: F(X,t)-O

and assign to IIX-XFII an infinite value if F(X,t)#0 for all tER. With this definition,
eq. (2.57) is equivalent to

pF(X) -1-min { 1, IIX - XFIXF} • (2.63)

This formulation is better suited for numerical calculations than (2.57), because the
norm (2.62) can be approximately computed as shown by the following proposition.

Proposition 4. Let the r components of F(X,t) be linearly independent functions
of t. Then the following approximation of (2.62) is exact for functions F(X,t) that are
linear with respect to t:
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(OF( 
T'J -' 

.1/2II X -X F III F (X ,t) T -T 
.

F .  F (X ,t ) (2 .6 4 )

Proof. We use the definition (2.62) and formulate the left hand side of eq. (2.64)
as the following constrained minimization problem:

Minimize
W=(t - T)T . pI .(t - T)

subject to (2.65)

F(X, t) = 0

Using a Lagrange multiplier vector k, one obtains for the problem (2.65) a
modified objective function

L(t - T)T - pTI. (t - T) - kT- F(X,t) (2.66)

The corresponding normal equations are

PT' -(t - T) -F - k =0
RX, t = o(2.67)

f(X,t) =0

where F1=F/t. After elimination of k from the first equation (2.67) and
multiplication of the result from left by (t-T)T, one obtains the following formula for
11 t- T1I2 at the solution:

(t - T)T - p . (t - T) =-(t - T)T - FIT. (F,• PT ' Fr)-' " F " (t - T) . (2.68)

On the right hand side of eq. (2.68) we approximate

aF(X,t) . (t - T) k -F(X,T) (2.69)
at

(because F(Xt)=O ), and also use the argument (X,T) instead of (X,t) in the product
F,.PT.FT. The result is the right hand side of eq. (2.64).

If F is linear with respect to t, then (2.69) exactly holds, and F, is independent of
t. Therefore, (2.64) is exact in the linear case, q.e.d.

Now we investigate the structure of the membership function PXF(X) in the
vicinity of the apex of the function. The apex itself is the crisp hypersurface XF(T),

defined by F(X, T)=0. The level surfaces /XF=y, or IIX-XFIIXF=I --y, approximately
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are given by the equation (see (2.64))

FT- (Ft. PT• Ft) - . f--F=(1 -7)2 (2.70)

Let YEXF(T), i.e., Y be a point of the apex of XF(T). Then, F(Y, T)=0 and, expanding
F in eq. (2.70) in terms of X - Y and only keeping the first non-zero term, one obtains
for the level surface the equation

(X- y)T rF . (F.pT. FtT)-. Fx . (X- Y)=(1 _y) 2 , (2.71)

where Fx=aF/&X. Within the accuracy provided by the one-term approximation, the

structure of the level surface in the vicinity of Y is characterized by the matrix

QY = FXT (F " PT " FT)- ' ' Fx - (2.72)

We recall that FERr and r<n. The rank s of the matrix Qy is, therefore, at most

equal to r:n. (It-equals r if Fx has a full row rank.) If s=n, then the solution XF is a

fuzzy point in Rn, and the surfaces IIX-XFIIxF=1--y are hyperellipsoids in R,. If
s < n, then the matrix Qy is only semidefinite and the surfaces are hypercylinders. If -1
is close to one, then the boundaries of the support of pxF(X)--y are in case s<n

cylindrical surfaces that are approximately parallel to the apex surface XF(T).

If the apex XF(T) is a point in R, then its distance norm 1I 1IA from a fuzzy point

X is defined by eqs. (2.2) to (2.3). If the apex XF(T) is a surface in R, then we define

the distance by

IIXF-AIIA = min [(X-A)T . P;l .(X-A)] 1 /2 -

(2.73)
- [(X-A)T. P;1'(X-A) ]1/ 2

X: F(X, T)-O

An approximate formula for IIXF-AIIA is provided by the following proposition.

Proposition 5. Let the r components of F be linearly independent functions of X.

Then the following approximate formula for (2.73) is exact for functions F(X,t) that are
linear with respect to X:

11XF - A11A [FT . (Fx " PA " FT)- 1  F 11/2 , (2.74)

where F and OF/OX are evaluated at (A, T).

Proof The proof follows the same steps as the proof of Proposition 4, with

appropriate changes of the arguments of F(X, T).

The separation between a fuzzy point X and the fuzzy surface XF may be

measured in analogy to (2.7) by the discord
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D(X, XF) = min max { lX - AIIA , 1iX - XF[[XF } (2.75)

The grade of collocation between A and -F is (see eq. (2.10))

(A, (F) - 1 - 1 m (1, D(X,XF) } . (2.76)

In some important special cases the discord D(X,XF) can be explicitly computed.
These cases are covered by the following Propositions 6 and 7.

Proposition 6. Let Fx and F, be full rank constant coefficient matrices,

F(X,t) = Fo + F x . X + F j . t (2.77)

A : XF(T), PA be non-singular,

IX- AIA = [(X- A) T . P; 1 " (X-A) 11/2 , (2.78)

iJx - XFIIXF = [ F(X, T)T (F1 ' PT " Fr)-' " F(X, T) 11/2 , (2.79)

and L(X) be the locus of points where IIX-AIIA=constant is tangent to
IIX-XFI11XF= constant.

Necessary and sufficient for the locus to be a straight line is that

,3" F, "Pr" F T = Fx- PA "FXT (2.80)

for some positive 3.

Proof. We first note that L(X) by definition contains the point A, and that along
any straight line through A the planes tangent to llX-A1A=constant are parallel to

each other. The tangent plane which passes through a point C5A is spanned by vectors
X - C that satisfy the equation

(C -A) T . W .P t (X -_ C ) = O . (2.81)

The plane tangent to (IX-XFIjXF=constant which passes through a point C4XVF(t) is
spanned by vectors X-C that satisfy the equation

F(C,T)T . (Ft" PT' Fir)-' " Fx (X- C) =0 . (2.82)

Let BEXF(T), i.e., F(B,T)=O. Then, F(C,T)=Fx-(C-B) and (2.82) can be expressed

in the form

(C-B)T" F '(F, " PT" FT)-' Fx '(X-C) =0 . (2.83)

Eq. (2.83) shows that planes through C and tangent to 1IX-XFIIXF=constant are
parallel to each other for all such C which are located on any straight line that passes
through a BEYF, i.e., through the apex of Xp.

- 16-



We find a point BEXF(T) which also is a point of the locus L(X) by solving the
following minimization problem:

Minimize
W = (B -A )T - P; , . (B - A)

subject to
F(B,T) =0

Using a Lagrange multiplier vector k, one obtains a modified objective function

W I(BA)T. p;l . (B-A) - kT. F(B,T)
2

and the corresponding normal equations

PVl . (B - A) - F T. k _-O

F(B,T)= 
I (2.84)

Eliminating k from the first equation (2.84) one obtains
B - A = PA" rr'T (rx "- PA"- Fr)- 1 ' Fx'-(B-A),

or, because F(B,T) = F(A,T) + Fx . (B-A) =0,

B-A = -A FT(Fx PA FT)- ' " F(A,T) . (2.85)

The plane tangent to IIX-AIIA=constant through the point B is spanned by vectors
X-B which satisfy the equation (see (2.81))

(B -A) r ". p; l. (X - B) =0,

or, using eq. (2.85),

F(A,T)T . (Fx PA - FxT) - 1 " Fx" (X - B) =0 . (2.86)

On the other hand, the surface IIX-XFJxF= constant which passes through the point A
has a tangent plane that is spanned by vectors X-A satisfying the equation (see (2.82))

F(A,T)T" (F, ' Pr FIT)- ' F (X-A) =0 . (2.87)

Necessary and sufficient for L(XY) to be a straight line is that the planes defined by eqs.
(2.86) and (2.87), respectively, are parallel to each other. Inspecting the equations, one
sees that necessary and sufficient for the planes to be parallel is that (2.80) holds, q.e.d.

Proposition 7. Let the premises of Proposition 6 hold, and (2.80) be satisfied.
Then,
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D(X,XF) = IIXF - AIIA H1A - XFIXF(

ilXF - AIIA + 11A - XFIiXF (2.88)

where IIXF-AIlA is given by eq. (2.74) and IIA -XF(IXF is given by eq. (2.79).

Proof The discord D(X,-XF) is defined by eq. (2.75). Because ]IX-AliA as well
as IIX-XFIIxF are unbounded continuous functions, differentiable everywhere, except at
their zeros, the minimum in eq. (2.75) is assumed at a point C where
II C-AIla=I C-XFIIXF, and the planes tangent to (IX-AIA=constant and tangent to
I X-XFllxF= constant coincide. C necessarily is a point of the locus L(X), or,
according to Proposition 6 a point of the straight line through A and B, the latter point
being given by eq. (2.85). Therefore, one can compute D by first finding that point C
between A and B where both norms are equal, and then computing the value of the
norms at X=C.

Let

C=A +a.(B-A) (2.89)

be a point of L(X). Then, by definition

IIC A = liao IiB- AIIA =-1 • IIXF - AIIA

and

II C - XFIXF = I 1 - ee • 1hA - XFIXF

Both expressions are equal for

11A - XIxF
a IIXF - AIIA + IIa- XFxF

Hence,

D(X,Y) =IIC- AIIA =Q. IIXF - Alia

is given by eq. (2.88), q.e.d.

Corollary S. Let F(X,t)=Fo + Fx.X + Fi- t be a scalar linear function of X and
t. Then the discord D(X,.F) is given by eq. (2.88).

Proof. If F is a scalar linear function, then eq. (2.80) is satisfied and
Proposition 7 holds.

Corollary 4. Let A and B be fuzzy points in R,, and PA=0.PB. Then the
discord between X and B is given by
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( - JIB - Alia (2.90)

Proof. We define B as the solution of the fuzzy equation

F(X,B) = X- B =O .

Propositions 6 and 7 hold for this function and, therefore

l*1IB - A, ...__ IIB - AIIa , q.e.d.
(1 +). ib-Aia = 1 +0

If F(X, T) is not linear in X and T, then the discord formula (2.88) may be applied
to a linearized approximation of the equation F(X,T)=0, e.g., to a fuzzy set of
equations with the elements

r(X, t) = x (X - 1)+ Ft-(t - T)=0

where YEXF(T). For scalar F this yields a reasonable value for the discord if t is
sufficiently close to T and X is sufficiently close to XF(T). If F is not scalar, then also
the condition (2.80) needs to be satisfied to have a reasonable approximation of the
discord. In particular, in the case r=n the condition (2.80) is important.

We make a final remark about the fuzziness of the surface F(X,T)=0. Its spread
is defined by eqs. (2.62) and (2,63). It is easy to see that the spread depends on the
formulation of the equation F(X,T)=O. Therefore, two forms of the equation which
produce the same crisp apex surface XF(T) (defined by F(X,T)=O) in general have
different spreads, i.e., they define different fuzzy surfaces -F. This dependence of -ICF on
the equation formulation is an intrinsic property of fuzzy equations.

3. FUZZY MODEL FITTING.

3.1. Fuzzy Models.

We consider mathematical models of observable events that are formulated as
twice differentiable fuzzy equations among components of a fuzzy observable vector .
That is, the models are fuzzy equations of the type

f(X,T)=0 , (3.1)

where F is a twice differentiable vector function. It is convenient to assume that the
model parameter vector T consists of two parts, Tf and T. The first part, Tf,
represents free model parameters. The second part, TP, consists of prescribed
parameters. (Either of these can be an empty set, of course). The apex T1 of T! is
determined by fitting the model to observations while the apex T. is predetermined.

- 19-



The corresponding panderance matrices, P! and PTp, of these vectors may be
prescribed or determined concurrently with other unknowns of the regression problem.

We assume throughout the rest of this section that the dimensions of F, X and T
are r, n and p, respectively. We will, however, permit the functions Fi and the
corresponding dimensions ri and ni to be different for different observation vectors Xi.
For simplicity, we assume that the model parameter dimension p is the same for all
observations. This is not a restriction, because not all model functions F need to
depend explicitly on all parameters.

3.2. Model Fitting Principles.

We determine the unknown model parameter vector T by maximizing the
membership values of the corrected observations as well as the membership values of
the model surface at the corrected observations. Because the membership functions
have a normalized maximum of one, the maximization is equivalent to a minimization
of the deviations of the membership values from one. In particular, we minimize the
sum of the squares of such deviations.

The constraints of the model fitting problem are the equations

Fi(X i + ci, T + ei) =O, i=1,. . . ,s . (3.2)

That is, local adjustments are applied to the apexes X of the observations X i={Xi,PX}
as well as to the apex TT=(Tf, TI,) of the model parameter vector. The local
corrections are only applied to the fuzzy components of Xi and T. That is, if a
component of these vectors is crisp, then the corresponding local adjustment is zero.
The non-zero adjustments are obtained by minimizing the objective function

W= I ( -lXi(Xi + Ci) ) 2 + (I - PT(T + el) )21 (3.3)

subject ot the constraints (3.2).

The solution of the model fitting problem consists of the model parameter vector
and the set of the local adjustments (residuals) ci and ei. In the n,-dimensional space

of the i-th observation set, the fitted surface (the model) is the fuzzy solution of the
equation F(X, T)=O. It is reasonable to* require that the observations Xi are close to
the fitted surface. In our fuzzy environment we express such a requirement in terms of
the grade of collocation between X, and X, i, that is, by

i,1,. .. ,s . (3.4)

The choice of 4,i depends on the particular application and expresses the modeller's
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confidence in the adequacy of the model and in the reliability of the data panderance
estimates. Typically one specifies different desired values of 4, in the course of an
investigation or sets all desired values equal zero and calculates a posteriori the attained
grades of collocation. The attained grades then might be used as outlier indicators.

Using the relation (2.76) between "y(X,X .) and the discord D(Xi,XFi), and the
discord formula (2.88), this condition can be approximated by

IIXFi - Xi Xi " Isi - XFiI xFi *

IIXFi - XIIXi + II - <ri1-Xi

or, in case of a scalar linearizable model, by

II Cillx II ill T <6, ~,~,EjeT<1 1--t (3.6)bi " 11 Cill Xi + Ei " 11 eill T 3 6

where the norms are given by eq. (2.3) in terms of the panderances Psi and PT,
Fi(X i, T + ei) (37)

Fi(Xi, T)

and

Ei Fi(Xi + ci, T) (3.8)
Fi(Xi,T)

The corrector Ei appears in eq. (3.6) because 11cilxi is not the norm of the whole
distance of the observed point X i from the apex XFi, but only of a part of it. A linear
approximation yields 1[ 1ciIXi=Ei" IXFi-Xi Xi and, correspondingly,

II ejill T=- IIi--XFiIXFi-

If at the solution all the psi and AT in the expression (3.3) are positive then one
can use the definition (2.4) and express the objective function (3.3) in terms of the norms
I cill Xi and II eill T as follows:

8

WN = [t [ I1'11I IleIll = - [ cT. Pj . C, + CT. -I . e, . (3.g)

Because WN is a differentiable function of ci and ei for all non-zero values of the
residuals, the numerical minimization of WN subject to eq. (3.2) is much simpler than
the minimization of W. After the solution is obtained one may check the membership
values #xi and PT as well as the inequality constraints (3.4) and take appropriate action
if the membership values are not positive or (3.4) are not satisfied. Usually they are
satisfied if model and data are reasonable. The testing of the conditions is most
conveniently done in terms of the discords D(Xi,XFi), i.e., by eq. (3.5), because the
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values of D also provide a measure for the identification of outliers. The appropriate
action again depends on the particular application and little can be said in general. It
may involve a removal of outliers, reexamination of panderance estimates, change of
model, etc.

If the panderance matrices PXi and PT are given, then eqs. (3.2), (3.4) and (3.9)
define a constrained minimization problem where the unknowns are T, ci and ei. More
common are situations where the parameter panderance matrix PT of the free
parameters T1 is not known. Then it can be iteratively determined making use of the
panderance propagation formula (2.41). For such an iteration, one assumes an initial
estimate PTfO, numerically solves the minimization problem and computes the ensuing
panderance matrix PTf,1 using the linearized panderance propagation formula (2.41).
Then this matrix is normalized (see below) and taken as initial estimate, etc.

The linearized panderance propagation formula produces a panderance matrix
with a norm proportional to the norms of the input panderances. Therefore, an
iteration without a normalization of the iterated panderance matrix between iterations
generally does not converge to a non-zero finite panderance matrix of the model
parameters. The iteration with normalization determines on the other hand only the
relative fuzziness and concordances of the parameters and thereby allows one to
prescribe the relative importance of model and data fuzziness, respectively. Let this
relative importance be expressed by a scalar parameter, say cf. Let another parameter,
0, express the relative importance of the fuzziness of the free and prescribed parameters,
respectively. We express the objective function WN as a function of the two parameters
as follows:

I

WN(c=/f) q2 (3.10)

q= •  e . ., (.1

and

(1 - )2 . Px, 0 0

Pqi) 0 a 2 .,2 . 0 (3.12)

0 0 Cf2'(1--) 2 .PTP

The two parameters a and P may have values between zero and one. If ce=0 then
we have an adjustment problem with fuzzy data and crisp model. If a=1 then the data
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are crisp and the model is fuzzy. If a>0 and 8=0 then the data are fuzzy, the free
model parameters are crisp and the prescribed model parameters are fuzzy. If a>0 and
#=1 then the data are fuzzy and and the model has only free and fuzzy parameters. By
choosing appropriate values for a and # one can obtain a number of different
combinations of conditions. We give three examples of such combinations. First, if all
the panderance matrices PX,, PT! and PTP are prescribed, then we use (3.12) with

-=2/3 and #=1/2. Second, if Pxi and PTP are given, and PTf is iteratively determined,
then we specify a and 8 by two conditions. First, we require that the relative weights of

the contributions >-'IlcII[' and Elleill to WN are the same. Second, we require

that the contribution of E'I efi]If (after the normalization of the iterated parameter
panderance matrix Prf) to WN have the same weight as the sum of the contributions of

EllcillI and Ell ji,,,ll2,. The first requirement is satisfied if

r(3.13)
2- 8

The second requirement we express by the equation

llCill2, + Ie',ll - 11 e f 11X- T= 0 (3.14)
i=1 ---1 i=1

Eqs. (3.13) and (3.14) are a system of equations for a and #3, because the residuals
depend on ae and #. We can obtain the numerical solution of this system, for instance,
using a regula falsi algorithm for #.

As a third example for the choice of a and 6 we assume that the Pxy are known
and PTf is iteratively determined, as before, and that PTP is known only up to scaling
factor. Now, PT as well as PTP contain arbitrary scaling factors. In this case, we
postulate the following two conditions for a and #. First, we require that the
contribution of Ellefi1l2 to wN receives the same weight as the contribution of

'llepi 12 . Second, we require that the sum of all contributions of the parameter
residuals has the same weight as the contribution E ll cilI2 of the residuals of the
observations. The two conditions can be expressed in form of the following two
equations.

G(o,,3) = E Ilell'.f- .E Ile ,IIJ., =0 (3.15)i---- Tff

and
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H(,6) = - E IIcillx', + E Ilefll. s + E le,, ll' . (3.16)
i=1 iml1 f i=1

This system of equations for a and # we solve numerically by a regula falsi algorithm in
the a,#Lplane. (Note that G(a,O)<O, G(a ,) 0, H(0,0 )<0 and H(1,fi) 0, which assures
the existence of a solution within the unit square).

3.3. Numerical Treatment.

The central part of the numerical treatment of the model fitting problem is the
solution of the following constrained minimization problem:

Minimize
SW a (CS0 e,') -P;;, (31a

subject to

Fi(X + c,, T + e,) = 0 , i = 1,..., s , (3.17b)

where the Pqi are defined by eq. (3.12). This problem formally is equal to a usual least
squares model fitting problem with vector data and implicit model equations [21.
Software for the solution of such problems is available for instance from Ill and can be
used to solve (3.17). The solution of the example presented in Section 4 was computed
using the utility routine COLSAC [1]. The result of a COLSAC calculation consists of
the optimal values of ci, ei and T, and a posterior estimate of the panderance matrix

PTf computed with the panderance propagation formula (2.41) from the input
panderance matrices. If no iterations are involved, i.e., if PT is prescribed, then a single
call of COLSAC concludes the calculations.

The inequality constraints (3.4) usually are inactive, except for outliers. If it is
determined that data with large discords cannot be discarded or treated in the same
manner as other data, (i.e., the inequality constraints ignored), then one has a more
complicated programming problem at hand. There is no guarantee that the problem
has a solution and, if a solution exists, it generally is not very useful, because it
particularly accommodates outliers. The treatment of problems with outliers and too
stringent conditions (3.4) very much depends on the application and typically may
involve a change of the model functions F i. We shall not further pursue this type of
problem, and assume that the inequality constraints are inactive at the solution.

For certain ranges of a and fi the convergence of the procedure for the
determination of PT can be quite slow. In such cases, one may first determine the
matrix PT by iteration for extreme values of a and 6 and use an interpolated matrix PT
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for subsequent calculations with other a and 8. Then, iteration to find the final PT
might be resumed in the vicinity of the final point in the a,#-plane.

4. MODEL OF PLATE DEFORMATION.

4.1 Data and Model.

The vulnerability of armored vehicles depends among other things on the
deformation of armor plates by the blast of a nearby explosion. References [10] and [11]
describe a series of experiments in which such deformations were measured. We shall
use data from these experiments in an example of fuzzy model fitting.

The relevant data consist of the charge energy, the distance of the charge from the
armor plate, the thickness of the plate and the maximum deflection of the plate. (The
size of the unsupported span of the plate was the same in all experiments and, therefore,
its influence on the deformation cannot be obtained from the data. However, in most of
the observed cases, the size of the deformation was such that the influence of the plate's
support reasonably could be assumed negligible). Some of these data were measured
quite precisely (e.g., the plate thickness), while other data were inaccurate and obvious
candidates for fuzzy numbers. Such a datum is, e.g., the strength of the plate's material
which we chose to characterize by its ultimate yield stress. The yield stress is ill defined
and difficult to measure, and it was found to vary considerably between plate specimens
[11. In summary, it was assumed that all data were fuzzy numbers with appropriate
spreads.

The regression model of the plate deformation is not derived from a mechanical
theory of the event, because such a general theory does not exist. Instead, the model
was determined by exploratory data analysis and dimensional arguments. This
uncertainty about the form of the model was represented in the model specification by
using fuzzy equations as model constraints. Thus, in this example, the model as well as
the data are fuzzy.

The following two dimensionless quantities were used as variables:

A B E , (4.1)d 'd' • T • o

where z (m) is the maximum deflection, d (m) is the distance of the charge from the
plate, E (J) is the energy released by the explosion, T (m) is the thickness of the plate
and a, (Pa) is the ultimate yield stress of the plate's material. The maximum deflection
was obtained from a detailed analysis of various observed deflections, as described in
reference [5], d, E and T were obtained by simple measurements, and for orM a nominal
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handbook value was used.

In reference [5] the quantity B was called a ballistic limit indicator, because the
size of B is a predictor for the onset of plate failure: the plate fails (develops a hole) if B
exceeds the fuzzy bound B 0={129.,40i} Since B is also useful as an indicator for the
size of plate deformation by blast, a better name for B is the blast damage indicator.

Table 1 lists the deflection data with their estimated spreads and concordances.
The spreads of d, E, T and a were assumed to be constant and estimated by
reasonable assumptions about measurement accuracy. The spread of the deflection z
was obtained by the data analysis in reference [5]. The spreads of A and B were
computed from these estimates using eq. (2.41). The concordances between the observed
X and the corresponding Bf are not zero, because both depend on the distance d.
Figures 2 and 3 display the data points without and with the corresponding supports of
their membership functions, respectively. The different symbols of data points in the
figures distinguish different subsets of the experiments but the distinction is not
important for the present example.

The model function was chosen to be

F(X,; WE, 2r) --a- + b" _ .(4.2)

The parameters W and b were assumed to be free and their spreads were not prescribed.
The parameter ?' was assumed to have the apex 1.50 and either a spread of 0.2 or an
undetermined spread. Thus, in this example, the panderance matrix Pr1 of the free
parameters is a (2X2)-matrix and the panderance matrix PTP of the prescribed
parameter F is a scalar. The data fitting was carried out as described in Section 3 with
the aid of the utility routine COLSAC [1].

4.2 Data and Model Spreads.

The data panderance matrices PX, are given in terms of the data in Table 1 by

ri 5 A'S"

xi2= (4.3)
SAi"' s~i"* CAMi s .

where sA. and ssB are the spreads of Ai and Bi, respectively and CAB, is the concordance
between Ai and Bi. The parameter part of the regression panderance matrix (3.12) is

Sa2". 92".p Tf 0]

PT= 0 0 (4.4)
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where the (2X2)-matrix PT was determined by iteration. We calculated two cases. In
one case, PT was assumed as given by eq. (4.4). In the other case, we assumed that the
spread of the exponent F ( =0.2 in eq. (4.4)) is not known, that is, PTP was assumed to
contain an unknown scaling factor.

In the former case, the normalization factor of PTf was chosen such that the
maximum discord between any of the apexes X i of the observations X,, i=1,...,s, and
the fuzzy surface F(X, Tf, Tp)=o was equal to five. In the latter case, we first

normalized P! and PTP separately such that the maximum discords between the
observation apexes and F(X, Tf, Tp)=0 and F(X, Tf, Tp)=0, respectively, were equal to

five. Then the complete matrix PT (consisting of the two separately normalized

submatrices) was normalized such that the maximum discord between the observation
apexes and the surface F(X, TP Tp)=0 was equal to five. We remind that the choice of
a normalization procedure (in the present case, also the maximum discord values chosen
for the normalization) is arbitrary in the sense that it affects only the numerical values
of c and /6, which regulate the relative weights of data and parameter residuals (see
Section 3.2).

The posterior fuzziness of the fitted model can be estimated using the panderance
propagation formula (2.41) if the panderances of data and model parameters are all
prescribed. If a part of the model parameter panderance matrix PT is iteratively
determined then the result contains arbitrary parameters and a direct application of
(2.41) cannot be justified. Therefore, one should in such cases determine the spread of
the model by other means, also taking into account the actually observed deviations
between data and fitted model.

In the present example, the fitted function was used in the form

,X(B) = A(B, T) = a + b. BF , (4.5)

and its spread was adapted to observations by using two quadratic modulator functions
M(B), one each for the positive and negative spreads of X. First, P was normalized
using a factor * such that the largest discord between the fitted curve A(B, T) and the

X i was five. This gave a reasonable spread increase pattern for the model outside the
observed range of B but a too optimistic spread within the observed range. Therefore,
modulator functions M(B) were introduced to define modulated panderance matrices by

PT ,d = M(B)2 p2 . Pr (4.6)

The modulator functions were determined such that the largest discord between the
fitted A(B, T) and the observations 9i was less than two. The form of the modulator

functions was
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M(B) = max {1, m I + m 2 (B - B0 )2 } (4.7)

with proper constants ml, m 2 and B0 , and a different function was determined for

positive and negative differences, respectively, between the fitted function and
observations. The maximal discord value of two was established by numerical
experiments and chosen because it produced a spread pattern in reasonable agreement
with the scatter of observations. The final formula for the spread of X(B)=A(B, T) is

_2A-- 'Proo (4.8)
a 8T IT

4.3. Numerical Results.

Table 2 contains the numerical results in the two presented examples. The table
lists the optimal values of the model parameters, their spreads and the concordance cob
between a and b. The panderance matrix of the parameter vector is given in terms of
the spreads and cab by eq. (2.6). The quoted spreads correspond to a matrix that is
normalized such that in the parameter space the largest discord between the locally
corrected parameters and the apex of the parameter vector equals one and, therefore,
the listed spread s. of F in Case 1 is not equal to the prescribed nominal value of 0.2 . A

comparison of the two cases illustrates the effect of assigning a fixed value to the spread
of a model parameter. Thus, in the present example, the spread of F is larger in Case 1
than in Case 2, as are the uncertainties of the other two model parameters W and b. The
increase of the latter two is a consequence of the condition (3.16). Plots of the final
model curve X(B) are shown in Figures 4 and 5. The figures display for each data point
its corresponding support ellipse (modified by the factor 1-a, see eq. (3.12) ), the
corrected data point X+ci, and a short segment of the fitted function that passes
through the corrected point and has the highest membership value PFT- (It is a segment

of the curve F(X, T-+.ei)=0 ). The spreads of the model curves shown in Figures 4 and 5

are computed using the factor IP and the modulator functions M(B) from Table 2 to
modulate the parameter panderance matrix given at the top of the table (see
Section 4.2). The differences between the shapes of the spreads of the fitted curves in
both figures illustrate how a prescribed model fuzziness may affect the result of the

fitting.

An overview of the local parameter adjustments is provided by Figures 6 and 7.
They show in the parameter space three views of the locally adjusted parameter sets,
i.e., the end points of the vectors T+ei=(a+ei ,b+ebi ,c-ei)T. Also shown are the

contours of the support ellipsoid of the fuzzy parameter vector T. The ellipsoid
corresponds to the spreads a., sb and s listed in Table 2.
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5. SUMMARY.

Mathematical models of terminal ballistics problems often must be based on
incomplete theories and data that contain inaccuracies which are not probabilistic. An
example of such a problem is the deformation of an armor plate by a nearby explosion.
To treat this problem, we have used concepts of fuzzy set theory and developed
algorithms for a special type of fuzzy regression.

The algorithms are based on concepts of analytic geometry and restricted to data
and model parameter vectors which are characterized by a particular type of conical
membership function. The regression principle is to maximize in a least squares sense
membership values of fuzzy observations and of fuzzy fitting functions. The restriction
to conical membership functions and the employment of a least squares principle have
the advantage that the calculations can be done with available software for least squares
regression problems with implicit constraint functions. The model functions can be
implicit and nonlinear with respect to data as well as with respect to model parameters,
and the algorithms accept fuzzy data as well as fuzzy parameters, whereby the latter
may be either free or prescribed. The method is mote flexible than previously published
methods, which are restricted either to linear models, [6] through [9], [121 and [13], or to
crisp models [3], or to crisp data [4]. (The membership functions are restricted to
particular types in all of the quoted publications about fuzzy regression methods). We
feel that the possibility to choose freely the model functions is a considerable asset of the
present method.

The method is applied to a set of data from experiments where armor plates were
deformed by bare charge explosions. The result is a fuzzy non-linear function that
predicts the maximum of a relative deflection of the plate in terms of a dimensionless
blast damage indicator, The model takes into account the inaccuracies of data and the
vagueness of the theoretical basis by assigning proper fuzziness measures to the
prediction.
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Figure 1. Conical membership function in R 2.
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Table 1. Input Data.

Nr. Label B B-Spread A A-Spread Concordance

I RD- 2/T# 5 105.26 21.17 0.76056 0.01369 0.053516
2 RD- 5/T# 5 102.93 20.70 0.76508 0.01158 0.063669
3 RD- 6/T# 5 118.21 23.81 0.98405 0.01693 0.063657
4 RD- 8/T# 5 51.00 10.21 0.43281 0.00458 0.018055
5 RD- 9/T# 5 64.24 12.87 0.55264 0.00386 0.034592

6 RD-1O/T# 5 51.34 10.28 0.37383 0.00344 0.034592
7 RD-11/T# 5 64.99 43.02 0.41531 0.00366 0.029891
8 RD-12/T# 5 65.18 13.06 0.43272 0.00582 0.001796
9 RD-13/T# 5 85.16 17.07 0.51172 0.00408 0.039626

10 RD- 14/T# 5 115.30 23.12 0.86140 0.00971 0.038086

11 RD-16/T# 5 123.73 24.82 1.02472 0.02159 0.022186
12 RD-18/T# 5 97.93 19.63 0.77744 0.00821 0.034652
13 RD-19/T# 5 107.91 21.64 0.87198 0.00772 0.044735
14 RD-21/T# 5 81.80 16.39 0.67031 0.00425 0.030151
15 RD-22/T# 5 87.36 17.50 0.77164 0.00593 0.026309

16 RD-23/T# 5 89.61 17.95 0.79166 0.00471 0.036016
17 RD-24/T# 5 101.66 Z0.37 0.92772 0.00577 0.038845
18 RD-25/T# 5 112.61 22.56 0.91424 0.01386 0.016990
19 RD-27/T# 5 119.06 23.85 0.92703 0.00606 0.039406
20 RD- 1/T#10 69.83 14.07 0.40709 0.00767 0.066639
21 RD- 2/T#10 135.94 27.54 0.96792 0.02033 0.116586
22 RD- 3/T#10 95.37 19.25 0.62306 0.01206 0.088135
23 RD- 4/T#10 116.19 23.51 0.77957 0.01784 0.088517
24 RD- 7/T#10 96.04 19.39 0.69616 0.01057 0.112396
25 RD- 8/T#10 114.02 23.05 0.78626 0.01431 0.111430

26 RD- 9/T#10 114.04 23.06 0.78291 0.01279 0.124088
27 RD-10/T#10 131.31 26.70 1.28464 0.03112 0.101073
28 RD-11/T#10 129.67 26.07 0.95972 0.01227 0.075380
29 RD-14/T#10 122.87 24.70 1.02897 0.01251 0.079290
30 RD- 16/T# 10 130.02 26.09 1.19877 0.01199 0.061773

31 RD-18/T#10 130.85 26.26 1.13072 0.01138 0.061376
32 RD-19/T#10 152.65 30.64 1.16320 0.01258 0.063302
33 RD-22/T#10 123.06 24.68 1.05742 0.01652 0.032715
34 RD- I/T#20 86.41 17.55 0.20707 0.00873 0.071527
35 RD- 2/T#20 110.83 22.60 0.63734 0.01885 0.129906

36 RD- 3/T#20 66.25 13.32 0.28792 0.00438 0.063388
37 RD- 4/T#20 86.75 17.46 0.63775 0.00852 0.094093
38 RD- 6/T#20 100.05 20.16 0.54149 0.00845 0.093388
39 RD- 8/T#20 115.95 23.30 0.65883 0.01016 0.062502
40 RD- 12/T#20 90.62 18.19 0.45640 0.00668 0.052095

41 RD-13/T#20 102.40 20.57 0.59983 0.00682 0.075114
42 RD-15/T#20 91.35 18.34 0.48248 0.00518 0.071063
43 RD- 16/T#20 90.17 18.15 0.40348 0.00625 0.081118
44 RD- 17/T#20 122.35 24.69 0.60291 0.00953 0.107990
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Table 2. Model Parameters.

Case 1. Prescribed Apex and Spread of Z.

a= { - 5.92 10- 2 , 31.60 10- ' }, 0= = 5.83.10 - 2

1i= { 7.5210- 4, 3.6810-  }, sb 9 = 0.68 10 - 4

={ 1.500, 0.134 , s,. I = 0.025

Cab - - 0.952 52, =l = 0.184 39

M(B)+ = 2.588 - 1.1910-4(B - 48.4)2

M(B)- = - 2.617 + 3.75 10-4.(B - 90.8)2

= 0.75, # = 0.67

Case 2. Prescribed Apex and Undetermined Spread of c.

a= { -3.01 10-2, 20.88 .10- 2 }, Sa" = 12.28 10- 2

= { 7.50 10- 4 , 2.28-0 - }1, s6" T' = 1.52 10- 4

- { 1.500, 0.040 }, sC P = 0.024

Cab - 0.955 21, = = 0.587 88

M(B)+ = 1.952 -4.1810-4(B - 80.4)2

M(B)- = - 2.641 + 3.80.10-4"(B - 93.4)2

= 0.60, 3 = 0.43

Note: The fuzzy numbers in this table are given in the form {a, sa }, that is, the
second number in the braces is the spread (not the panderance).
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